Showing posts with label e1. Show all posts
Showing posts with label e1. Show all posts

Thursday, December 25, 2008

Cisco CCNP / BSCI Exam Tutorial: OSPF Route Redistribution Review

OSPF route redistribution is an important topic on the BSCI exam, and it's a topic full of details and defaults that you need to know for the exam room and the job. To help you pass the BSCI exam, here's a quick review of some of the OSPF route redistribution basics.

To see if a router is an ABR or ASBR, run show ip ospf. This also displays any routes being redistributed into OSPF on this router.

R1#show ip ospf

Routing Process "ospf 1" with ID 1.1.1.1

Supports only single TOS(TOS0) routes

Supports opaque LSA

It is an area border and autonomous system boundary router

Redistributing External Routes from,

connected, includes subnets in redistribution

rip, includes subnets in redistribution

When redistributing RIP into OSPF, the “subnets" option is needed to include subnets in redistribution. When redistributing OSPF into RIP, a seed metric must be specified. (OSPF gives redistributed routes a default metric of 20 – this can be changed, but a seed metric does not have to be set.)

R1(config)#router ospf 1

R1(config-router)#redistribute connected

% Only classful networks will be redistributed

R1(config-router)#redistribute connected subnets

R1(config-router)#redistribute rip subnets

R1(config-router)#router rip

R1(config-router)#redistribute connected metric 1

R1(config-router)#redistribute ospf 1 metric 1


By default, routes redistributed into OSPF are marked as E2 routes. The metric for these routes reflects only the cost of the path from the ASBR to the destination network and does not include the cost of the path from the local router to the ASBR. By contrast, E1 routes include the cost of the entire path from the local router to the destination network.


O E2 5.1.1.1 [110/20] via 172.34.34.3, 00:33:21, Ethernet0

6.0.0.0/32 is subnetted, 1 subnets

O E2 6.1.1.1 [110/20] via 172.34.34.3, 00:33:21, Ethernet0

172.12.0.0/16 is variably subnetted, 2 subnets, 2 masks

O E2 172.12.21.0/30 [110/20] via 172.34.34.3, 00:33:32, Ethernet0

O E2 7.1.1.1 [110/20] via 172.34.34.3, 00:33:21, Ethernet0

15.0.0.0/24 is subnetted, 1 subnets

O E2 15.1.1.0 [110/20] via 172.34.34.3, 00:33:32, Ethernet0

To redistribute routes into OSPF and mark them as E1 upon redistribution, use the metric-type option with the redistribution command.

R1(config)#router ospf 1

R1(config-router)#redistribute rip subnets metric-type ?

1 Set OSPF External Type 1 metrics

2 Set OSPF External Type 2 metrics

R1(config-router)#redistribute rip subnets metric-type 1

Look at the same two routes in R4's routing table, which are now displayed as E1 routes:

O E1 5.1.1.1 [110/94] via 172.34.34.3, 00:04:13, Ethernet0

6.0.0.0/32 is subnetted, 1 subnets

O E1 6.1.1.1 [110/94] via 172.34.34.3, 00:04:14, Ethernet0

BSCI exam success and earning your CCNP certification depends on knowing the details, and there are plenty of details involved in OSPF route redistribution! Keep studying, practice different scenarios in your CCNA / CCNP home lab or rack rental, and you'll master these details and pass the exam!

Tuesday, December 23, 2008

Cisco CCNA / CCNP Certification: OSPF E2 vs. E1 Routes

OSPF is a major topic on both the CCNA and CCNP exams, and it's also the topic that requires the most attention to detail. Where dynamic routing protocols such as RIP and IGRP have only one router type, a look at a Cisco routing table shows several different OSPF route types.
R1#show ip route
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
In this tutorial, we'll take a look at the difference between two of these route types, E1 and E2.
Route redistribution is the process of taking routes learned via one routing protocol and injecting those routes into another routing domain. (Static and connected routes can also be redistributed.) When a router running OSPF takes routes learned by another routing protocol and makes them available to the other OSPF-enabled routers it's communicating with, that router becomes an Autonomous System Border Router (ASBR).
Let's work with an example where R1 is running both OSPF and RIP. R4 is in the same OSPF domain as R1, and we want R4 to learn the routes that R1 is learning via RIP. This means we have to perform route redistribution on the ASBR. The routes that are being redistributed from RIP into OSPF will appear as E2 routes on R4:
R4#show ip route ospf

O E2 5.1.1.1 [110/20] via 172.34.34.3, 00:33:21, Ethernet0

6.0.0.0/32 is subnetted, 1 subnets

O E2 6.1.1.1 [110/20] via 172.34.34.3, 00:33:21, Ethernet0

172.12.0.0/16 is variably subnetted, 2 subnets, 2 masks

O E2 172.12.21.0/30 [110/20] via 172.34.34.3, 00:33:32,
Ethernet0

O E2 7.1.1.1 [110/20] via 172.34.34.3, 00:33:21, Ethernet0

15.0.0.0/24 is subnetted, 1 subnets

O E2 15.1.1.0 [110/20] via 172.34.34.3, 00:33:32, Ethernet0

E2 is the default route type for routes learned via redistribution. The key with E2 routes is that the cost of these routes reflects only the cost of the path from the ASBR to the final destination; the cost of the path from R4 to R1 is not reflected in this cost. (Remember that OSPF's metric for a path is referred to as "cost".)
In this example, we want the cost of the routes to reflect the entire path, not just the path between the ASBR and the destination network. To do so, the routes must be redistributed into OSPF as E1 routes on the ASBR, as shown here.
R1#conf t

Enter configuration commands, one per line. End with CNTL/Z.

R1(config)#router ospf 1

R1(config-router)#redistribute rip subnets metric-type 1

Now on R4, the routes appear as E1 routes and have a larger metric, since the entire path cost is now reflected in the routing table.
O E1 5.1.1.1 [110/94] via 172.34.34.3, 00:33:21, Ethernet0

6.0.0.0/32 is subnetted, 1 subnets

O E1 6.1.1.1 [110/100] via 172.34.34.3, 00:33:21, Ethernet0

172.12.0.0/16 is variably subnetted, 2 subnets, 2 masks

O E1 172.12.21.0/30 [110/94] via 172.34.34.3, 00:33:32, Ethernet0

O E1 7.1.1.1 [110/94] via 172.34.34.3, 00:33:21, Ethernet0

15.0.0.0/24 is subnetted, 1 subnets

O E1 15.1.1.0 [110/94] via 172.34.34.3, 00:33:32, Ethernet0

Knowing the difference between E1 and E2 routes is vital for CCNP exam success, as well as fully understanding a production router's routing table. Good luck in your studies!