Ever since you picked up your first CCNA book, you've heard about multicasting, gotten a fair idea of what it is, and you've memorized a couple of reserved multicasting addresses. Now as you prepare to pass the BCMSN exam and become a CCNP, you've got to take that knowledge to the next level and gain a true understanding of multicasting. Those of you with an eye on the CCIE will truly have to become multicasting experts!
Having said that, we're going to briefly review the basics of multicasting first, and then future tutorials will look at the different ways in which multicasting can be configured on Cisco routers and switches.
What Is Multicasting?
A unicast is data that is sent from one host to another, while a broadcast is data sent from a host that is destined for "all" host addresses. By "all", we can mean all hosts on a subnet, or truly all hosts on a network.
There's a quite a bit of a middle ground there! A multicast is that middle ground, as a multicast is data that is sent to a logical group of hosts, called a multicast group. Hosts that are not part of the multicast group will not receive the data.
Some other basic multicasting facts:
There's no limit on how many multicast groups a single host can belong to.
The sender is usually unaware of what host devices belong to the multicast group.
Multicast traffic is unidirectional. If the members of the multicast group need to respond, that reply will generally be a unicast.
The range of IP addresses reserved for multicasting is the Class D range, 224.0.0.0 - 239.255.255.255.
That range contains a couple of other reserved address ranges.
224.0.0.0 - 224.0.0.255 is reserved for network protocols only on a local network segment. Packets in this range will not be forwarded by routers, so these packets cannot leave the segment.
Just as Class A, Class B, and Class C networks have private address ranges, so does Class D. The Class D private address range is 239.0.0.0 - 239.255.255.255. Like the other private ranges, these addresses can't be routed, so they can be reused from one network to another.
The remaining addresses fall between 224.0.1.0 and 238.255.255.255. That's the "normal" range of multicast addresses. These addresses can be routed, so they must be unique and should not be duplicated from one network to the next.
In my next BCMSN / CCNP multicasting tutorial, we'll take a look at the different ways in which Cisco routers and switches interact to forward multicast traffic.
Showing posts with label reserved. Show all posts
Showing posts with label reserved. Show all posts
Thursday, December 25, 2008
Cisco CCNA Exam Tutorial: Loopback Interfaces
As a CCNA candidate, you most likely have some background in PC hardware and workstation support. If so, you're already familiar with loopback interfaces, particularly 127.0.0.1, the loopback address assigned to a PC.
When you're learning all about the different physical interfaces for your CCNA exam - serial, ethernet, and BRI, among others - there's one logical interface you need to know about, and that is - you guessed it! - the loopback interface.
What isn't as immediately apparent is why we use loopback interfaces on routers and switches to begin with. Many of the Cisco router features that can use loopbacks are intermediate and advanced features that you'll learn about in your CCNP and CCIE studies, but these features all come back to one basic concept: If the loopback interface on a router is down, that means the router is unavailable as a whole.
In contrast, a physical interface being down does not mean the router itself is out of commission. A router's ethernet port can go down, but the other physical interfaces on that router are still operational. Since a loopback interface is logical, there's nothing physical that can go wrong with it.
As I mentioned, you'll learn different Cisco router and switch features that utilize loopback interfaces as you climb the Cisco certification ladder. There's one misconception about Cisco loopback interfaces that you want to get clear on now, though. You’re probably familiar with loopback interfaces on a PC, and may even know that the address range 127.0.0.0 is reserved for loopback addressing.
Note that this reserved address range does not apply to loopbacks on Cisco devices, however. If you attempt to assign an address from this range to a Cisco loopback interface, you get this result:
R1#conf t
Enter configuration commands, one per line. End with CNTL/Z.
R1(config)#interface loopback0
R1(config-if)#ip address 127.0.0.2 255.255.255.0
Not a valid host address - 127.0.0.2
R1(config-if)#ip address 127.1.1.1 255.255.255.0
Not a valid host address - 127.1.1.1
The range 127.0.0.0 is reserved for host loopbacks (such as PCs), not routers or switches. The most commonly used address from this range is 127.0.0.1 – if you can’t ping that on a workstation, that means you can’t ping yourself, which means there’s a problem with the TCP/IP install itself.
Keep these details in mind on the exam and in the workplace, and you’re on your way to CCNA exam success!
When you're learning all about the different physical interfaces for your CCNA exam - serial, ethernet, and BRI, among others - there's one logical interface you need to know about, and that is - you guessed it! - the loopback interface.
What isn't as immediately apparent is why we use loopback interfaces on routers and switches to begin with. Many of the Cisco router features that can use loopbacks are intermediate and advanced features that you'll learn about in your CCNP and CCIE studies, but these features all come back to one basic concept: If the loopback interface on a router is down, that means the router is unavailable as a whole.
In contrast, a physical interface being down does not mean the router itself is out of commission. A router's ethernet port can go down, but the other physical interfaces on that router are still operational. Since a loopback interface is logical, there's nothing physical that can go wrong with it.
As I mentioned, you'll learn different Cisco router and switch features that utilize loopback interfaces as you climb the Cisco certification ladder. There's one misconception about Cisco loopback interfaces that you want to get clear on now, though. You’re probably familiar with loopback interfaces on a PC, and may even know that the address range 127.0.0.0 is reserved for loopback addressing.
Note that this reserved address range does not apply to loopbacks on Cisco devices, however. If you attempt to assign an address from this range to a Cisco loopback interface, you get this result:
R1#conf t
Enter configuration commands, one per line. End with CNTL/Z.
R1(config)#interface loopback0
R1(config-if)#ip address 127.0.0.2 255.255.255.0
Not a valid host address - 127.0.0.2
R1(config-if)#ip address 127.1.1.1 255.255.255.0
Not a valid host address - 127.1.1.1
The range 127.0.0.0 is reserved for host loopbacks (such as PCs), not routers or switches. The most commonly used address from this range is 127.0.0.1 – if you can’t ping that on a workstation, that means you can’t ping yourself, which means there’s a problem with the TCP/IP install itself.
Keep these details in mind on the exam and in the workplace, and you’re on your way to CCNA exam success!
Subscribe to:
Posts (Atom)