When you're studying to pass the BCMSN exam on the way to earning your CCNP certification, you're going to add to your CCNA knowledgebase every step of the way. Nowhere is that more than configuring a trunk between two switches.
You know that IEEE 802.1Q ("dot1q") and ISL are your two choices of trunking protocols, and you know the main differences between the two. What you might not have known is that there's a third trunking protocol that's running between your Cisco switches, and while it's a transparent process to many, you had better know about it for your BCMSN and other CCNP exams!
The Cisco-proprietary Dynamic Trunking Protocol (DTP) actively attempts to negotiate a trunk link with the remote switch. This sounds great, but there is a cost in overhead - DTP frames are transmitted every 30 seconds. If you decide to configure a port as a non-negotiable trunk port, there's no need for the port to send DTP frames.
DTP can be turned off at the interface level with the switchport nonegotiate command, but as you see below, you cannot turn DTP off until the port is no longer in dynamic desirable trunking mode. (Dynamic desirable is the default mode for most Cisco switch ports.)
SW2(config)#int fast 0/8
SW2(config-if)#switchport nonegotiate
Command rejected: Conflict between 'nonegotiate' and 'dynamic' status.
SW2(config-if)#switchport mode ?
access Set trunking mode to ACCESS unconditionally
dynamic Set trunking mode to dynamically negotiate access or trunk mode
trunk Set trunking mode to TRUNK unconditionally
SW2(config-if)#switchport mode trunk
SW2(config-if)#switchport nonegotiate
When you're working with Cisco switches in a home lab or rack rental environment, run IOS Help regularly to see what options are available for the commands you're practicing with. Cisco switch ports have quite a few options, and the best way to find them is with one simple symbol - the question mark!
Showing posts with label trunk. Show all posts
Showing posts with label trunk. Show all posts
Thursday, December 25, 2008
Wednesday, December 24, 2008
Cisco CCNA Certification: How And Why Switches Trunk
Your CCNA studies are going to include quite a bit of information about switches, and for good reason. if you don't understand basic switching theory, you can't configure and troubleshoot Cisco switches, either on the CCNA exam or in the real world. That goes double for trunking!
Trunking is simply enabling two or more switches to communicate and send frames to each other for transmission to remote hosts. There are two major trunking protocols that we need to know the details of for exam success and real-world success, but before we get to the protocols, let's discuss the cables we need.
Connecting two Cisco switches requires a crossover cable. As you know, there are eight wires inside an ethernet cable. In a crossover cable, four of the cables "cross over" from one pin to another. For many newer Cisco switches, all you need to do to create a trunk is connect the switches with a crossover cable. For instance, 2950 switches dynamically trunk once you connect them with the right cable. If you use the wrong cable, you'll be there a while!
There are two different trunking protocols in use on today's Cisco switches, ISL and IEEE 802.1Q, generally referred to as "dot1q". There are three main differences between the two. First, ISL is a Cisco-proprietary trunking protocol, where dot1q is the industry standard. (Those of you new to Cisco testing should get used to the phrases "Cisco-proprietary" and "industry standard".) If you're working in a multivendor environment, ISL may not be a good choice. And even though ISL is Cisco's own trunking protocol, some Cisco switches run only dot1q.
ISL also encapsulates the entire frame, increasing the network overhead. Dot1q only places a header on the frame, and in some circumstances, doesn't even do that. There is much less overhead with dot1q as compared to ISL. That leads to the third major difference, the way the protocols work with the native vlan.
The native vlan is simply the default vlan that switch ports are placed into if they are not expressly placed into another vlan. On Cisco switches, the native vlan is vlan 1. (This can be changed.) If dot1q is running, frames that are going to be sent across the trunk line don't even have a header placed on them; the remote switch will assume that any frame that has no header is destined for the native vlan.
The problem with ISL is that is doesn't understand what a native vlan is. Every single frame will be encapsulated, regardless of the vlan it's destined for.
Switching theory is a big part of your CCNA studies, and it can seem overwhelming at first. Just break your studies down into smaller, more manageable parts, and soon you'll see the magic letters "CCNA" behind your name!
Trunking is simply enabling two or more switches to communicate and send frames to each other for transmission to remote hosts. There are two major trunking protocols that we need to know the details of for exam success and real-world success, but before we get to the protocols, let's discuss the cables we need.
Connecting two Cisco switches requires a crossover cable. As you know, there are eight wires inside an ethernet cable. In a crossover cable, four of the cables "cross over" from one pin to another. For many newer Cisco switches, all you need to do to create a trunk is connect the switches with a crossover cable. For instance, 2950 switches dynamically trunk once you connect them with the right cable. If you use the wrong cable, you'll be there a while!
There are two different trunking protocols in use on today's Cisco switches, ISL and IEEE 802.1Q, generally referred to as "dot1q". There are three main differences between the two. First, ISL is a Cisco-proprietary trunking protocol, where dot1q is the industry standard. (Those of you new to Cisco testing should get used to the phrases "Cisco-proprietary" and "industry standard".) If you're working in a multivendor environment, ISL may not be a good choice. And even though ISL is Cisco's own trunking protocol, some Cisco switches run only dot1q.
ISL also encapsulates the entire frame, increasing the network overhead. Dot1q only places a header on the frame, and in some circumstances, doesn't even do that. There is much less overhead with dot1q as compared to ISL. That leads to the third major difference, the way the protocols work with the native vlan.
The native vlan is simply the default vlan that switch ports are placed into if they are not expressly placed into another vlan. On Cisco switches, the native vlan is vlan 1. (This can be changed.) If dot1q is running, frames that are going to be sent across the trunk line don't even have a header placed on them; the remote switch will assume that any frame that has no header is destined for the native vlan.
The problem with ISL is that is doesn't understand what a native vlan is. Every single frame will be encapsulated, regardless of the vlan it's destined for.
Switching theory is a big part of your CCNA studies, and it can seem overwhelming at first. Just break your studies down into smaller, more manageable parts, and soon you'll see the magic letters "CCNA" behind your name!
Subscribe to:
Posts (Atom)